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ABSTRACT
Modern vehicles are equipped with advanced sensors and capabili-
ties, yet engaging human drivers effectively in hazard perception
remains a challenging research area. This paper investigates the
potential of mixed reality (MR) to enhance driver warning sys-
tems. The study examines the impact of attention-shifting methods,
including visual cues, audio cues, and a combination of both, on
drivers’ hazard perception. A preliminary study involving six par-
ticipants was conducted, and the NASA-TLX analysis did not yield
significant differences. However, through the use of functional near-
infrared spectroscopy (fNIRS), we unveil distinct brain activation
patterns associated with visual and sound cues. Further research
with larger sample sizes and diverse driving scenarios is required
to validate and expand upon these preliminary results.

CCS CONCEPTS
• Human-centered computing→ Laboratory experiments.
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1 INTRODUCTION
Driving requires constant processing of external information, which
must be presented to the driver in a clear and easily understandable
way to ensure safety, especially during critical situations. Current
systems like Head-Up Displays (HUDs) and AR windshields (WSD)
have limitations in displaying information within a confined area
and focal depth, potentially missing important alerts outside this
restricted region.

In contrast, Mixed Reality (MR) devices have the advantage of
projecting digital information anywhere in the driver’s field of
view, providing more customizable and adaptable visualizations.
This ensures that information is presented in the most relevant and
convenient location for the driver. MR devices also offer different
focal depth displays and introduce interactive elements, which can
dynamically direct the driver’s attention to sudden events.

However, the impact of this emerging technology on drivers’
cognitive load is not yet fully understood. To address this research
gap, our study aims to investigate how drivers shift their atten-
tion during critical situations when using mixed-reality displays.
We will employ functional near-infrared spectroscopy (fNIRS) and
self-report methods like NASA-TLX to comprehensively analyze
data and shed light on the potential benefits and challenges of MR
displays in driving scenarios.

2 RELATEDWORK
Driver’s Situation Awareness. Situation Awareness (SA) plays a

crucial role in driving, encompassing perception, comprehension,
and projection of environmental elements [1]. SA in driving refers
to operators’ updated and meaningful knowledge guiding their
decisions and actions [6]. Given the attention-demanding nature of
driving, maintaining adequate SA is essential. In related research,
gaze behavior, including fixation time and dwell time, has been
utilized to detect user awareness of environmental hazards [11–
13, 22]. These studies have shown the potential of gaze behavior as
an indicator of hazard detection. In our study, we employed gaze
information to used as a measurement tool to establish reaction
time.
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Attention Guidance in Driving Scenario. With recent advances in
automotive technology, different in-vehicle display systems have
emerged to provide drivers with surrounding information [4, 16,
20]. A significant research focus in this domain centers around
enhancing drivers’ SA through the effective design of notifications
[16]. Traditional displays like HUDs and WSDs are able to project
notifications onto a small windshield area [5, 7, 8, 14, 18].

However, their fixed focal depth and projected notification posi-
tion raise challenges. Prior research, like Coleman et al.’s study on
comparing different HUD displays [14], emphasized the importance
of addressable focal planes in minimizing reaction time and improv-
ing reaction precision [15]. Due to the limited field of view(FOV)
and testing scenarios they didn’t further discuss attention shifting
in their research. In our paper we addresses the attention shifting
gap by exploring the potential benefits and challenges of mixed
reality displays for attention guidance in driving scenarios.

Brain sensing with fNIRS. fNIRS has emerged as a valuable tool
for non-invasive monitoring of brain activities. Similar to fMRI,
it estimates brain activity by measuring brain hemodynamic re-
sponses. By using light sources and detectors on the scalp, fNIRS
captures the absorption rate of light to determine the concentration
and oxygenation of blood in the cerebral cortex. This allows for
objective reflection of activation patterns in specific brain areas[19].
fNIRS is portable, reliable, and widely used in studying cognitive
and task switching[3, 9, 10]. It offers flexibility, lower costs, and
minimal disruption from small movements and physiological sig-
nals. Validation against fMRI confirms its reliability, although fNIRS
has limited spatial resolution and anatomic specificity compared to
fMRI due to its light-based sensing technique.

3 ATTENTION SHIFTING TEST
3.1 Study overview
Our study focuses on investigating the workload associated with at-
tention shifting methods with MR displays in driving scenarios, uti-
lizing fNIRS as a measuring tool. We developed a driving simulator
with MR displays and implemented three attention-shifting meth-
ods. Through a within-subjects experiment (n=6), we compared
brain activity and behavioral performance across these methods.
By analyzing fNIRS signals, self-reported surveys, and behavioral
metrics, we aim to address the following research questions:
RQ1: How does the type of notification impact cognitive workload,
specifically in terms of cortical responses measured by fNIRS?
RQ2: How does the type of notification affect response time and
error rate in a driving context?
We present detail of our methodology and result in the following
sections.

Participants. Six participants (20-27 years old, average age 24.5)
were recruited from the university. They had normal vision and the
experiment was conducted in a campus research laboratory.

Task. The study task is divided into a primary task and a sec-
ondary task. In the primary task, participants should follow the
guiding line on the ground to drive. The secondary task involves
recognizing the shape of the icon in the caution sign and pressing
the corresponding button on the steering wheel.

Attention-Shifting Methods. In our study, we employed three
Attention-Shifting Methods as conditions: Sound, Visual and Both.
The Sound condition employed spatial sound at the target position
to indicate its location. The visual condition used a directional lines
to direct participants’ attention during the task. Both conditions
integrated both visual and Sound cues for participants during the
task. We describe the design details in the next section.

Attention-Shifting Methods Design. Our study highlights the ef-
fectiveness of attention shifting methods in mixed reality (MR) by
utilizing two novel approaches: spatial sound and directional lines.
Spatial sound allows for a more immersive experience by providing
auditory cues that are spatially alignedwith virtual objects or events
in the MR environment. This enhances the driver’s ability to locate
and attend to specific sources of information. Additionally, the use
of directional lines provides visual cues that guide the driver’s atten-
tion towards critical objects or areas of interest. These advantages
of MR, namely the integration of spatial sound and directional lines,
have not been previously observed in traditional methods. In our
study, we simulate an abstract scenario to capture the driver’s re-
sponse to critical situations. The driving view was divided into the
source plane and target. The source plane represented the driver’s
focal point, while the target depicted critical objects like obstacles
and pedestrians[Fig.1A-B]. We used red outlined squares and a cau-
tion sign to inform the driver of the immediate response required
to deal with the critical situation. The caution sign contains two
icons, a square and a circle, representing different types of critical
situation event messages. To draw attention without disruption, we
generated a transparent orange line connecting the source plane’s
center to the target’s center in the driving scenario. [Fig.1C-E]

Apparatus. For the driving simulator setup, we used a laptop
with an Intel i7-10700k CPU, RTX 2080 GPU, and 32GB RAM. Par-
ticipants controlled the vehicle with a Logitech G29 steering wheel.
The game view was projected on a 90-inch screen using an Epson
projector. For fNIRS measuring, we utilized the NIRx NIRSport2
with 8 sources and 8 detectors. The Quest Pro MR display provided
targets, notifications, and eye tracking data. A Macbook Pro served
as the server, using OSC to synchronize signals and receive eye
tracking data. [Fig.2 A] The chosen track was the highlands drift in
Assetto Corsa, with the Lotus Elise SC as the vehicle for improved
control.

3.2 Measurement
fNIRS Montage Design for MR Device. Given the use of an MR

headset, we customized the standard prefrontal cortex measure-
ment montage to ensure compatibility and adequate coverage of
our region of interest (ROI), particularly the dorsolateral prefrontal
cortex (dlPFC) andmedial frontal cortex (MFG). Our new cap design,
inspired by an effective montage[21], balanced capturing cortical ac-
tivity with comfort under the Quest Pro device. These brain regions
are known for their involvement in task switching and higher-order
thinking[9, 10]. Our primary region of interest for these tasks was
the prefrontal cortex for its role in executive function and deci-
sion making.[Fig.2 B] Within the frontal cortex our sub-regions
of interest were the bilateral dorsolateral prefrontal cortex (dlPFC)
for it’s roles in task switching as well as the middle frontal gyrus
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Figure 1: A) driver’s actual field of view in the real-world scenario B) Simulating an abstract scenario to capture the driver’s
response to critical situations in our study C) Visual and Both condition in participant view. D) Circle caution sign icon. E)
Sound condition

Figure 2: A) Study Apparatus B) This images shows the montage used for the experiments in this study. Highlighted are the
regions of interest. Blue shows the channels measuring the bilateral dlPFC while orange indicates the channels measuring
activity in the MFG/PFC

(MFG) for it’s role in processing external stimuli during attention
shifting.[2, 10]. EEG 10/10 landmarks on a NIRx fNIRs cap were
used to guide the channel placement for our regions of interest.

NASA-TLX. To assess participants’ subjective mental workload,
we utilized the NASA-TLX survey. This survey was administered
immediately after each condition and provides a numerical rating
on a scale of 0 to 100, indicating the level of mental workload
experienced. It considers six sub-scales: mental demand, physical
demand, temporal demand, effort, performance, and frustration
level. These sub-scales are weighted and combined to produce a
single value representing the overall cognitive load. This value was
utilized in our analysis of participants’ subjective mental workload
during the study [17].

Behavioral Metrics. In our study, we measured two metrics: re-
sponse time and error rate. Response time was measured from the
target appearance to participant’s response. Error rate was calcu-
lated based on incorrect reactions. For instance, participants should
press the circle button for caution sign icons is circle shape. Pressing
the square button would be considered a wrong answer.

3.3 Procedure
The experiment consisted of four phases, with total lasting ap-
proximately an hour for each participant. The phases included: (1)
introduction, (2) signal optimization, (3) practice drive, and (4) ex-
perimental drive. During the introduction, participants were briefed
about the study and then proceeded to wear the fNIRS caps for sig-
nal optimization. Once the signal was confirmed, participants put
on the MR display and began practicing driving while familiarizing
themselves with the button responses. In the experimental drive
phase, participants were instructed to drive on the track, with a
target appearing every 5 seconds after each response. Each condi-
tion comprised 4 blocks, with each block lasting 60 seconds and a
20-second interval in between. After completing a condition, partic-
ipants were asked to answer the NASA-TLX questionnaire and had
a 2-minute rest period. The order of conditions was fully counterbal-
anced throughout the experiment. Finally, participants concluded
the study by answering questions about their experience.

3.4 Data Processing
All fNIRs data processing was done using the open-source Python
library MNE version 1.4.2. Our study was based around a within
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group block design delineated by event triggers in the fNIRs data
stream. The triggers used enabled ease of separation between the
"Sound", "Visual" and "Both" conditions. The events were converted
into epochs of 51 seconds from the time of the trigger.

3.4.1 Pre-processing. During the data pre-processingwe used scalp
coupling index (SCI) in order to validate the quality of the optode.
We decided to reject any channel that resulted in an SCI below 0.8.
The data was then re-sampled to 0.8 Hz. We then used temporal
derivative distribution repair (TDDR) in order to correct for baseline
shifts and spike artifacts. The raw hemodynamic data was then
passed through both a low-pass filter of 0.02 and a high-pass filter
of 0.3. The low-pass and high-pass filters were selected for their
ability to remove the physiological noise such as heart beat from the
sample data. The bandpass filters used during data pre-processing
were values recommended by the MNE documentation as default
values.

3.4.2 Data Analysis. Data analysis was carried out using a two
level approach separated into individual and group processing.
During individual processing each subjects data is pre-processed
as mentioned above. This step also involves the conversion of the
data streams into epochs. The epochs were created using event
triggers sent from Unity into Aurora to delineate various events.
Since this experiment was done as a block design we generated
epochs from -1 seconds to 50 seconds from the time of the trigger.
These epochs were then aggregated and passed onto the group level
analysis portion of the analysis pipeline. The statistical analysis for
the group was carried out using a generalized linear model (GLM).
In this step we incorporate our short channel measurements as well
as accelerometer data into the design matrix as regressors to further
remove any physiological noise and motion artifacts from the data
stream. The GLM data is then passed through a false detection rate
(FDR) test in order to minimize the presence of false positives in
our channel significance results.

3.5 Results
3.5.1 Cognitive Work Load.

fNIRs Results. In order to process the fNIRs results we relied on
both a two-way ANOVA using the python package statsmodels as
well as a channel by channel analysis with FDR correction generated
by the GLM. [Fig.3] The two-way ANOVA indicated there was a
significant effect between the channel and beta values produced
during GLM from the hemodynamic reading (p < 0.001, df = 35,
SSE = 2.12e-10, F = 2.85) as well as a significant interaction effect
between the channel and condition on those beta values (p < 0.001,
df = 70, SSE = 5.84e-10, F = 3.92). The channel by channel analysis
further demonstrated the significance of the channel to condition
interactions.

Interpretation of Significant fNIRS Channels. The significant chan-
nels seen in every condition can be found in Fig. 3. While the results
are still preliminary, they do show that participants had higher PFC
activation with "Sound" condition than the other two conditions.
The right dlPFC also seems to be preferentially activated when par-
ticipants were in the "Visual" condition. When participants were
in the "Both" condition it seems that the effects were more even

spread around the frontal cortex. It is interesting to note that the
effects on cognitive workload in the "Both" condition did not seem
to be a result of an additive effect of the visual and sound condition.

NASA-TLX Weighted Ratings. In this analysis we concerned our-
selves mostly with the NASA-TLX weighted rating for it’s ability
to distill cognitive work load into a single number. The "Sound"
condition responses produced a weighted rating ranging from 23.33
to 74.00 (M = 56.52, SD = 18.91). The "Visual" condition responses
produced a weighted rating ranging from 45 to 66 (M = 56.43, SD
= 7.91). Finally, the "Both" condition produced a weighted rating
ranged from 35.33 to 77.33 (M = 56.05, SD = 15.78).

Statistical Evaluation of NASA-TLX. We used a one-way ANOVA
to evaluate the statistical relevance of the NASA-TLX results. From
a high level, the Weighted Rating showed no statistical significance
between the conditions (p = 0.998, df = 2, F = 0.002). Among the
remaining six sub-scales neither sub-scale showed a statistically
significant difference between the three conditions.

3.5.2 Behavioral Metrics.

Target Finding Error. We used a two-way ANOVA to examine the
impact of condition and target area on target identification error
rates. The results showed that both condition and target area did
not have a significant effect on error rates. The error rates for the
"Visual" condition were 14.57%, the "Sound" condition error rate
was 10.14%, and the "Both" condition error rate was 14.97%.

Target Finding Time. The target finding time varied across the
conditions, with the "Visual" condition having a mean of 3.23s (SD
= 2.82s, N = 151), the "Sound" condition having a mean of 3.60s (SD
= 5.74s, N = 138), and the "Both" condition having a mean of 2.87s
(SD = 3.05s, N = 147). The two-way ANOVA results indicated that
neither the "target area" (F = 1.0380, p = 0.3089) nor the "condition"
(F = 0.7818, p = 0.4582) had a statistically significant effect on the
target finding time.

4 DISCUSSION
4.1 The Relation Between fNIRS and NASA-TLX
While both fNIRS and NASA-TLX have advantages and limitations,
relying solely on NASA-TLX may not offer a comprehensive un-
derstanding of cognitive workload across tasks. NASA-TLX is cost-
effective but provides only a snapshot of subjective experiences
without uncovering underlying reasons. Conversely, fNIRS enables
real-time measurement of physiological responses, shedding light
on underlying mechanisms behind behavioral patterns. Our study
found significant differences in cortical responses and task-based
behaviors not fully captured by NASA-TLX alone. Integrating these
modalities allows researchers to approach HCI questions from mul-
tiple perspectives, uncovering valuable insights overlooked by a
single metric or test. This integration offers a more nuanced under-
standing of cognitive processes in HCI tasks.

4.2 Target Presentation Intervals
One limitation of our study is the fixed 5-second time interval
between target displays during the experimental drive phase. We
chose this interval to control the hemodynamic response, aligning
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Figure 3: This image depicts the significant channels through a topographical map of the cortical surface. All channels and
cortical activation portrayed here survived FDR correction with an alpha set at 0.05.

with fNIRs block design practices. However, it may increase hazard
predictability, reducing ecological validity. In future research, we
aim to address this limitation by minimizing event predictability,
offering participants a more realistic driving experience.

5 LIMITATION AND FUTUREWORK
5.1 Exploring Limitations and Future

Possibilities of MR Experiments in Driving
Scenarios

In our study, we explored limitations when using MR devices in
experiments. Current MR devices have constraints in FOV, reso-
lution, and comfort, impacting user experience. Light variations
in different environments can affect object perception and inte-
gration, reducing realism. These limitations, like brightness issues,
may be resolved as MR technology advances. We successfully in-
tegrated MR display and fNIRS measuring in a driving simulator.
Future plans involve evaluating our study in real cars, enabling
deeper insights and comparisons with simulator results to advance
understanding.

5.2 Using neural network model to predict
driving events

In future research, we aim to explore leveraging machine learn-
ing and deep learning techniques to automatically label driving
events based on users’ hemodynamic responses. This eliminates
the need for manual triggering and allows for a more comprehen-
sive dataset. As a preliminary step, we propose training a support
vector machine (SVM) model using event triggers obtained from
this experiment. If successful, our next step would involve training
a transformer model using fNIRS data and video footage of partici-
pants’ driving. Achieving high accuracy with this approach would
provide a valuable tool for studying automotive user interfaces in
the HCI community.

6 CONCLUSION
This study investigated drivers’ attention allocation in critical sit-
uations using a mixed-reality display. A driving simulator with a
tailored fNIRS montage was used to explore the impact of different
notification types and positions on cortical responses and partici-
pant performance. During analysis we found significant differences
in fNIRS channel activation between conditions. Despite the fNIRs
results we found no further significant differences in subjective

reports and behavioral metrics between conditions. Certain metrics
such as the interaction between condition and target area on the
target finding precision were close to reaching significance (P =
0.051, SSE = 0.69, df = 2.0, F = 2.99). This suggests that further data
collection would be beneficial to further our understanding of the
effect between these interactions. Future plans involve gathering
real-world data and employing machine learning and deep learning
techniques to predict events based on users’ brain activity.
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